Bayesian Uncertainty and Expected Gradient Length - Regression: Two Sides of The Same Coin? **MA**(Megh Shukla Mercedes-Benz Research and Development India Mercedes-Benz WAIKOLOA, HI JAN 4-8 000

Why Active Learning?

Information Superhighway

Labelling all this data is very, very expensive

Active Learning: Can we select images to label such that we...

Maximize model performance per set of images annotated

Expected Gradient Length (EGL)

Gradient as a measure of informative content for an image

Classification ^[1]:
$$x^* = \arg \max \sum_i p(y_i | x, \theta) ||\nabla_{\theta} l(\mathcal{L} \cup \{x, y_i\}; \theta)||$$

Regression ^[2]: $x^* = \arg \max^{-1} \sum_{i=1}^{K} ||(f_i(x) - f_i(x))x||$

Regression ^[2]:
$$x^* = \arg \max \frac{1}{K} \sum_{k=1}^{K} ||(f_z(x) - f_k(x))x||$$

Intuitively defined, lacks theory! 😕

[1] Settles and Craven, "An Analysis of Active Learning Strategies for Sequence Labeling Tasks", EMNLP 2008

[2] Cai et al., "Maximizing expected model change for active learning in regression", ICDM 2013

Recap: Uncertainty

000

Bayesian Uncertainty in Computer Vision^[3]

[3] Kendall and Gal, "What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?", NeurIPS 2017

Are Bayesian Uncertainty and Expected Gradient Length equivalent?

Literature places uncertainty and expected gradient length as different active learning paradigms. Is there a connection between them?

SPOILER: Yes 😊

000

The No Free Lunch Theorem ^[4] ... But Why?

[4] Shalev-Shwartz and Ben David, "Understanding Machine Learning: From Theory to Algorithms", Cambridge Press

000

The No Free Lunch Theorem^[4] ... But Why?

There is no universal learner, no learner can succeed on all learning tasks

$$q(x, y | \theta_0) = p(y | x, \theta_0) q(x)$$

Bayesian Analysis
$$q(x, y) = \int_{\theta} q(y | x, \theta) q(x) \pi(\theta | z_{obs}) d\theta$$

But do we need to do this - 2

<u>YES.</u>

Namely, let A be a learning algorithm for the task of binary classification. Let m be any number smaller than $|\mathcal{X}|/k$, representing a training set size. Then, there exists a distribution \mathcal{D} over $\mathcal{X} \times \{0, 1\}$ such that:

- There exists a function $f : \mathcal{X} \to \{0, 1\}$ with $L_{\mathcal{D}}(f) = 0$.
- $\mathbb{E}_{S \sim \mathcal{D}^m}[L_\mathcal{D}(A(S))] \ge \frac{1}{2} \frac{1}{2k}.$

Notice the convergence of expected risk to chance as the ratio of unlabelled points increases

[4] Shalev-Shwartz and Ben David, "Understanding Machine Learning: From Theory to Algorithms", Cambridge Press

Fisher Information

Expected Gradient Length - Regression

$$x^* = \arg \max \frac{1}{K} \sum_{k=1}^{K} \int_{y} q(y|x, \theta_k) \|\nabla_{\theta_z} l(x, y, \theta_z)\|^2$$

 $(\mu_k - f_z)^2$

Expected Gradient Length - Regression

CLOSED FORM SOLUTION

$$|\nabla_{\theta_z} f_z(x)||^2 [(y - \mu_k)) + (\mu_k - f_z)]^2$$

$$||\nabla_{\theta_z} f_z(x)||^2 \qquad \int \mathcal{N}(y,\mu_k,\sigma_k)(y-\mu_k)^2 \mathrm{d}y + 2\int \mathcal{N}(y,\mu_k,\sigma_k)(y-\mu_k)(\mu_k-f_z) \mathrm{d}y + \int \mathcal{N}(y,\mu_k,\sigma_k)(\mu_k-f_z)^2 \mathrm{d}y + 2\int \mathcal{N}(y,\mu_k,\sigma_k)(y-\mu_k)(y-\mu_k)(\mu_k-f_z) \mathrm{d}y + \int \mathcal{N}(y,\mu_k,\sigma_k)(y-\mu_k)(y-\mu_k)(\mu_k-f_z) \mathrm{d}y + \int \mathcal{N}(y,\mu_k,\sigma_k)(y-\mu_k)(\mu_k-f_z) \mathrm{d}y + \int \mathcal{N}(y,\mu_k,\sigma_k)(y-\mu_k)(\mu_k-f_z) \mathrm{d}y + \int \mathcal{N}(y,\mu_k,\sigma_k)(y-\mu_k)(\mu_k-f_z) \mathrm{d}y + \int \mathcal{N}(y,\mu_k,\sigma_k)(y-\mu_k)(\mu_k-f_z) \mathrm{d}y + \int \mathcal{N}(y,\mu_k,\sigma_k)(y-\mu_k)(y-\mu_k)(\mu_k-f_z) \mathrm{d}y + \int \mathcal{N}(y,\mu_k,\sigma_k)(\mu_k-f_z) \mathrm{d}y + \int \mathcal{N}(y,\mu_k,\sigma_k)(\mu_k,\sigma_k)(\mu_k-f_z) \mathrm{d}y + \int \mathcal{N}(y,\mu_k,\sigma_k)(\mu_k-f_z) \mathrm{d}y + \int \mathcal{N}$$

MEAN - MEAN = O

VARIANCE

$$\mathbf{x}^{*} = \operatorname{argmax} \ \frac{||\nabla_{\theta_{z}} f_{z}(x)||^{2}}{K} \sum_{k=1}^{K} \hat{\sigma}_{k}^{2}(x) + (\mu_{k}(x) - f_{z}(x))^{2}$$

For reference – Bayesian Uncertainties in Computer Vision

$$Var(y) \approx \frac{1}{T} \sum_{t=1}^{T} \hat{y}_{t}^{2} - \left(\frac{1}{T} \sum_{t=1}^{T} \hat{y}_{t}\right)^{2} + \frac{1}{T} \sum_{t=1}^{T} \hat{\sigma}_{t}^{2}$$

No Ensembles / Dropouts?

No closed form solution for $q(y|x, \theta)$?

$$x^* = \arg \max \frac{1}{K} \sum_{k=1}^{K} \int_{y} q(y|x, \theta_k) \|\nabla_{\theta_z} l(x, y, \theta_z)\|^2$$

$$\mathbf{x}^* = \arg \max \sum_{n=1}^{n=N} q_{tsne}(y_n | x, \theta) \| \nabla_{\theta} l(x, y_n, \theta) \|^2$$

Algorithm: EGL++

Mercedes-Benz

Bayesian Uncertainty and Expected Gradient Length | Mercedes-Benz R&D India | January 2022

12

MPII Newell Validation Split: Mean+-Sigma (5 runs), one-tailed paired t-test (vs EGL++) at 0.1 significance value															
$\#$ images \rightarrow	2000			3000			4000			5000			6000		
Methods	μ	σ	p-value	$\mid \mu$	σ	p	μ	σ	p	μ	σ	p	μ	σ	p
Random Core-set [37] Multi-peak [27] Learning Loss [51] EGL++ (ours)	75.95 76.61 76.74 76.28 77.28	$\begin{array}{c} 0.55 \\ 0.6 \\ 0.61 \\ 0.76 \\ 0.63 \end{array}$	0.003 0.0047 0.0054 0.0276	78.33 79.24 79.56 79.27 79.58	$\begin{array}{c} 0.65 \\ 0.7 \\ 0.46 \\ 0.52 \\ 0.33 \end{array}$	0.012 0.245 0.462 0.185	80.31 81.25 81.19 81.35 81.53	$\begin{array}{c} 0.91 \\ 0.67 \\ 0.31 \\ 0.35 \\ 0.51 \end{array}$	0.006 0.072 0.063 0.152	81.35 82.23 82.61 82.94 83.07	$\begin{array}{c} 0.41 \\ 1.14 \\ 0.5 \\ 0.44 \\ 0.25 \end{array}$	0.001 0.123 0.093 0.319	82.23 82.97 83.11 83.79 <i>84</i>	$\begin{array}{c} 0.74 \\ 1.11 \\ 0.71 \\ 0.46 \\ 0.38 \end{array}$	0.007 0.064 0.062 0.053
LSP Test Split: Mean+-Sigma (5 runs), one-tailed paired t-test (vs EGL++) at 0.1 significance value															
		LS	SP Test Split: 1	Mean+-Sig	gma (5 r	uns), one	-tailed pai	red t-tes	t (vs EGI	L++) at 0.1	l signific	cance valu	ue		
$\#$ images \rightarrow		LS 200	SP Test Split: 1 0	Mean+-Sig 	gma (5 r 3000	uns), one	-tailed pai	red t-tes 4000	t (vs EGI	2++) at 0.1	l signific 5000	cance valu	ue	6000	
#images \rightarrow Methods	μ	LS 200	$\frac{\text{SP Test Split: 1}}{p - value}$	Mean+-Sig μ	gma (5 r 3000 σ	uns), one	tailed pai μ	$red t-tes$ 4000 σ	t (vs EGI	(2++) at 0.1	l signific 5000 σ	cance valu	ие <i>µ</i>	6000 σ	p

Uncertainty Quantification

Single deterministic network

Hyperparameter free (well ... almost!)

No modifications to existing architectures

Thank you!

Megh Shukla Computer Vision Research Engineer Mercedes-Benz R&D India

megh.shukla@daimler.com https://meghshukla.github.io

