

A Mathematical Analysis of Learning Loss for Active Learning in Regression

Megh Shukla, Shuaib Ahmed Mercedes-Benz Research and Development India

Workshop on Fair, Data Efficient and Trusted Computer Vision

Mercedes-Benz

Motivation

Active Learning for continuous model refinement

Can we recognize model failures on-the-fly?

Solution <u>LearningLoss++</u>

A mathematical evolution of Learning Loss to better identify failure cases for deployed models

What is Learning Loss?

Yoo and Kweon, "Learning Loss for Active Learning", CVPR 2019

Architecture:

Auxiliary network appended to the main model to predict the loss for a given image

$$\begin{aligned} & \text{Objective:} \\ \mathbb{L}_{loss} = \max\left(0, -\operatorname{sign}(l_i - l_j)(\hat{l}_i - \hat{l}_j) + \xi\right) \\ & \overbrace{\text{True Loss}} \text{Predicted} \quad \text{Predicted} \end{aligned}$$

Loss

Compares the true loss and predicted loss

Margin ensures a minimum separation between predicted losses

Why Learning Loss?

Task Agnostic, Real-time active learning ... Lacks rigorous analysis?

Mercedes-Benz

Loss margin

How Does Learning Loss Work?

Analysing the gradient response

$$\mathbb{L}_{loss} = \max \left(0, -\operatorname{sign}(l_{i} - l_{j})(\theta_{i}^{T}w - \theta_{j}^{T}w) + \xi \right)$$

$$\nabla_{w}\mathbb{L}_{loss} \in \left\{ 0, \pm(\theta_{i} - \theta_{j}) \right\}$$

$$\nabla_{\theta}\mathbb{L}_{loss} \in \left\{ 0, \pm w \right\}$$

$$(0, 0, z]^{T} \qquad \Theta_{j} = [1, 1, 1]^{T}$$

$$\Theta_{i} = [1, 2, 1]^{T}$$

$$\Theta_{i} = [1, 2, 1]^{T}$$

$$W = [0, 3, 0]$$

$$w = [0, 3, 0]$$

$$w = [0, 3, 0]^{T}$$

$$[x, 0, 0]^{T}$$

The weights of the learning loss network align along the most discriminative component between the embedding pair

LearningLoss++

We show that a KL divergence based objective is equivalent to the original empirical formulation:

$$\mathcal{L}_{loss}(w, \theta_i, \theta_j) = \mathrm{KL}(p||q) = p_i \log \frac{p_i}{q_i} + p_j \log \frac{p_j}{q_j}$$

p: probabilistic interpretation corresponding to the true losses for a pair of imagesq: softmax over the predicted losses for a pair of images

Learning Loss gradient	LearningLoss++ gradient
$\nabla_w \mathbb{L}_{loss} \in \{0, \pm(\theta_i - \theta_j)\}$	$\nabla_w \mathbb{L}_{loss}(w, \theta_i, \theta_j) = (q_i - p_i)(\theta_i - \theta_j)$
$\nabla_{\theta} \mathbb{L}_{loss} \in \{0, \pm w\}$	$\nabla_{\theta} \mathbb{L}_{loss}(w, \theta_i, \theta_j) = (q_i - p_i)w$

LearningLoss++ introduces a smoothness to the objective, absorbing the predicted loss margin! How does this smoothness lead to better learning of failures?

LearningLoss++

Case 1: True loss and predicted losses are similar Learning loss incorrectly penalizes the network!

Q. How likely are we to sample a pair of images with similar true losses?

Ans . A sufficiently trained Learning Loss network imposes a penalty for a non trivial number of image pairs with true loss margin <= δ

0.08

0.358

0.06

0.274

0.125

0.527

0.1

0.437

0.15

0.607

0.04

0.185

0.02

0.094

δ

 $P_{X,Y,\gamma}$

LearningLoss++

Case 2: True loss different, predicted losses similar Learning loss does not scale with the degree of error!

Q. Can we prove that LearningLoss++ implicitly absorbs both: 1) δ (true loss margin) 2) ϵ (predicted loss margin)? LearningLoss++ gradient:

$$\nabla_w \mathbb{L}_{loss}(w, \theta_i, \theta_j) = (q_i - p_i)(\theta_i - \theta_j)$$

The expected gradient given the true loss margin $\boldsymbol{\delta}$ is:

$$\mathbb{E}_{x,y|\delta_2} \left[\nabla_w \mathbb{L}(w,\theta_i,\theta_j) \right] = \lim_{\delta_1 \to \delta_2} \int_{x=0}^{x=\infty} \int_{y=x+\delta_1}^{y=x+\delta_2} (q_i - \frac{x}{2x+\delta_2})(\theta_i - \theta_j) \frac{\gamma(x,k,\Theta)\gamma(y,k,\Theta)}{p(y-x=\delta_2)} \mathrm{d}y \mathrm{d}x$$

Probability of sampling an image is the ratio of true losses

$\delta \rightarrow$	0.0	0.1	0.2	0.3	0.4	0.5
LL++ LL	q_i -0.5	<i>q_i</i> -0.39	q_i -0.3 $\leftarrow \text{cons}$	q_i -0.25 stant $c_1 \rightarrow$	q_i -0.21	q_i -0.18

The softmax in LearningLoss++ forces the network to correctly identify *lossy* images as the true loss margin increases

LearningLoss++: Results and Discussion

(a) Failure Detection: PCK scores for the images sampled at Stage n. (Lower PCK values indicate better identification of faulty inferences.)										
LSP-LSPET (PCK@0.2)				MPII (PCKh@0.5)						
# images	2000	3000	4000	5000	6000	1000	2000	3000	4000	5000
Random	0.430 ± 0.017	0.527 ± 0.012	0.593 ± 0.007	0.624 ± 0.009	0.645 ± 0.007	0.663 ±0.012	0.739 ± 0.013	0.766 ± 0.003	0.792 ± 0.007	0.797 ±0.006
Coreset	0.288 ± 0.017	0.438 ± 0.020	0.447 ± 0.017	0.493 ±0.013	0.556 ±0.010	0.384 ± 0.014	0.522 ± 0.009	0.608 ± 0.012	0.697 ± 0.009	0.755 ± 0.029
LL	0.305 ± 0.013	0.253 ± 0.021	0.358 ±0.025	$0.520 \ {\pm} 0.011$	0.617 ± 0.017	0.311 ±0.036	0.465 ± 0.024	0.621 ± 0.017	$0.735 \ \pm 0.012$	0.777 ± 0.010
LL++	0.250 ±0.011	0.186 ±0.022	0.385 ± 0.011	0.533 ± 0.020	0.627 ±0.012	0.291 ±0.022	0.439 ±0.018	0.610 ±0.020	0.705 ±0.023	0.762 ±0.014
LL++conv	0.209 ± 0.018	$\textbf{0.214} \pm 0.028$	0.400 ± 0.010	$0.545 \ \pm 0.011$	0.635 ± 0.012	0.309 ±0.029	0.439 ± 0.011	0.603 ± 0.016	0.704 ± 0.022	0.777 ± 0.008

LearningLoss++ has a higher correlation with the true loss

This aids in better identification of images with high losses

Why use LearningLoss++?

- 1. Rigorous analysis for better explainability
- 2. Recognize real world failures on-the-fly!
- 3. Eliminates the margin hyperparameter!
- 4. The revised objective results in a smoother gradient to identify *lossy* images

Mercedes-Benz

Thank you!

Megh Shukla Computer Vision Research Engineer Mercedes-Benz R&D India

megh.shukla@daimler.com

https://www.linkedin.com/in/megh-shukla/

