
A Mathematical Analysis of Learning Loss for Active Learning in Regression

Megh Shukla, Shuaib Ahmed
Mercedes-Benz Research and Development India

Workshop on Fair, Data Efficient and Trusted Computer Vision





Motivation
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Active Learning for continuous model refinement
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Can we recognize model failures on-the-fly?

Solution
LearningLoss++

A mathematical evolution of Learning Loss to better identify failure cases for deployed models 
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What is Learning Loss? 
Yoo and Kweon, “Learning Loss for Active Learning”, CVPR 2019
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Architecture: Objective:

Auxiliary network appended to the 
main model to predict the loss for a 

given image

True Loss Predicted 
Loss

Predicted 
Loss margin

Compares the true loss and predicted loss

Margin ensures a minimum separation between predicted 
losses

Why Learning Loss?

Task Agnostic, Real-time active learning
… Lacks rigorous analysis?
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How Does Learning Loss Work?
Analysing the gradient response
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The weights of the learning loss network align along the most discriminative component between the embedding 
pair

Case 1: li > lj

Case 2: li < lj

… Role of the margin?
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LearningLoss++
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We show that a KL divergence based objective is equivalent to the original empirical formulation:

LearningLoss++ gradientLearning Loss gradient

LearningLoss++ introduces a smoothness to the objective, absorbing the predicted loss margin!
How does this smoothness lead to better learning of failures?

p: probabilistic interpretation corresponding to the true losses for a pair of images
q: softmax over the predicted losses for a pair of images





LearningLoss++

A Mathematical Analysis of Learning Loss for Active Learning in Regression

6Workshop on Fair, Data Efficient and Trusted Computer Vision

Case 1: True loss and predicted losses are similar
Learning loss incorrectly penalizes the network!

Q . How likely are we to sample a pair of images with similar 
true losses?

Statistical results 
allow us to model 
training losses 
with a Gamma 
distribution

Sampling a pair 
of images with 
true loss within δ

Ans . A sufficiently trained Learning Loss network 
imposes a penalty for a non trivial number of image 
pairs with true loss margin <= δ
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LearningLoss++
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Case 2: True loss different, predicted losses similar
Learning loss does not scale with the degree of error!

Q . Can we prove that LearningLoss++ implicitly absorbs both:
1) δ (true loss margin)     2) ε (predicted loss margin)?

The expected gradient given the true loss 
margin δ is: 

Probability of sampling an image is the ratio of true losses

The softmax in LearningLoss++ forces the 
network to correctly identify lossy images as the 
true loss margin increases

LearningLoss++ gradient:
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LearningLoss++: Results and Discussion
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LearningLoss++ has a higher 
correlation with the true loss

This aids in better 
identification of images with 
high losses
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Thank you!
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