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Abstract

This supplementary material contains the derivations that support the content of the main paper. We first derive a known
result that under certain conditions the integral of the gamma distribution has a closed form solution. This solution is useful
in computing the probability of sampling a pair of values within § (Eq: 5, main paper). We then derive the gradient (Eq: 4,
main paper) and its expectation (Eq: 6, main paper) of the LearningLoss++ objective.

1. Integral of the Gamma Distribution

Our goal is to compute the integral of the gamma distribution:

k =
/’Y(l,k,@)dx =-0 Z % = G((L’, kv@) (l)

Although this is a known result, we provide a brief outline of the proof. The assumption is that k, the shape parameter € Z*.
We need to simplify the following:
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The above equation can be written as [ y(z,k,©)dz = —Ov(z,k,0) + [~y(z, k — 1,0)dz. By recursively solving the
integral term using integration by parts, the equation reduces to [ y(z,k,©)dz = —O~(z,k,0) — Oy(z,k —1,0) ... —
Ov(x,k = 1,0). Hence, we can write the final form of the equation as:

Using integration by parts,
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2. Closed form solution for P(|X — Y| < §) when X, Y ~ v(k,0), k € Z*

The probability of sampling two variables within a margin ¢ of each other can be written as:
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Using the previous result Eq: 2, we can simplify the above equation as:
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We write Eq: 4 as P(|X —Y| <) = A4+ B+ C+ D. While a closed form solution can be easily obtained for B (integral
of gamma), We rely on the use of the binomial theorem (z + §)"~! = 2223—1 10,2161~ to simplify terms A, C and
D. The method to solve A, C and D remains the same, hence we show here to focus on reducing A to a closed form solution
in this supplementary material.
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We try to write the above equations by creating a new gamma distribution. After reorganizing the terms, we get:
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The final obstacle of writing the integral term into another gamma distribution is introducing I'(k 4 ). We use the property
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Fortunately, we have previously shown that a closed form solution exists to compute the integral of the gamma function.
We therefore reach the final solution for A:

of gamma functions, I'(k + i) =
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B, C, D involve a similar reduction process. Evaluation of terms at lim z — oo reduces to O since all the terms contain
(2™ /e™). We reproduce the final solution for A, B, C, D below:
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As in the paper, let f(i,n,k,J,0) = and G(z,k,©) = -0 ZZ:I @T() We note
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the C cancels the first term in A, leaving us with the final solution for P(|X — Y| < J§)=A+B+C+D:
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3. LearningLoss++ Gradient

We define similar notations from the paper: (l;,;) represent the true loss for images (x;, z;), the intermediate represen-
tations from the network for these images being (6;, ;). We define the learning loss network to be /; = 67w where ; is the
predicted/indicative loss for image x;. We define the ground truth probability of samphng x; over z; as: p; = L;/(li + 1)

and similarly for p;. The network’s probability of sampling x; over z; is g¢; = els i/(eli +e J) with ¢; defined similarly. The
minimizatio objective is:
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On substituting p, ¢ and computing the gradient with respect to w, Eq: 6 reduces to:
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Using the definition of l}, l}, i, g4, the equation can be written as:
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Since p; +p; =1, ¢; + ¢; = 1, we get (¢; — p;) = —(g; — p;)- The final gradient can now be written as:
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4. Expected Gradient for LearninglLoss++

Since providing a proof for the entire solution is time consuming and lengthy, we provide a derivation for the main skeleton
and show that the solutions discussed above (integral of gamma, binomial) can be reused to obtain a closed form solution for
the expected gradient. We continue from Eq: 8 in the paper; the expected gradient is defined as:
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Where we define 6; as lim 6 — §; — 0T to accurately define area under the curve as probability. By definition,
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The expectation reduces to:
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Since p(y — « = d2) is the normalizer, it is constant given d2. We therefore write D = p(y — 2 = d2). This allows us to
write Eq: 10 as:
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We see that Eq: 11 bears a strong resemblance with the derivation of P(|X — Y| < §) we proved earlier. We can directly
substitute the values of (z, k, ©), f;jﬁiél ~(y, k, ©) [Integral of Gamma] and f(i,n, k, d,©) from Eq: 5 into the above
equation to get:
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Let t = 2z + J9, then the above equation reduces to:
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If weletI(k+14,0)= [~ =62 22 dt, then we can write the expected gradient E, [V, L] as
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We note that this is the final expected gradient given the margin § and §; — §; = . However, we still need to compute
the closed form solution for D and I (k + 4, ©). We first compute the value of D:
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We have previously computed a similar result when deriving the closed form solution, where use the integral of gamma as
well as the binomial theorem to solve for integrating a gamma function within a gamma function. To avoid repetitive steps,
we present the final solution for D:
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the integral into a sum of integrals. However, the following caveat exists: The division by ¢ renders one term in the expansion
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an exponential integral of the form eT. This is reflected in the solution for I(k + i, ©):
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While the first term again contains the integral of the gamma function which is a closed form solution, the second term is a
consequence of the exponential integral that leads to the lower incomplete gamma function. We therefore have shown that
both D and I(u = k+14, ©) have closed form solutions, allowing the expected gradient Eq: 12 to have a closed form solution.




