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Abstract

This supplementary material contains the derivations that support the content of the main paper. We first derive a known
result that under certain conditions the integral of the gamma distribution has a closed form solution. This solution is useful
in computing the probability of sampling a pair of values within δ (Eq: 5, main paper). We then derive the gradient (Eq: 4,
main paper) and its expectation (Eq: 6, main paper) of the LearningLoss++ objective.

1. Integral of the Gamma Distribution

Our goal is to compute the integral of the gamma distribution:∫
γ(x, k,Θ)dx = −Θ

k∑
n=1

xn−1e−
x
Θ

ΘnΓ(n)
= G(x, k,Θ) (1)

Although this is a known result, we provide a brief outline of the proof. The assumption is that k, the shape parameter ∈ Z+.
We need to simplify the following: ∫

γ(x, k,Θ)dx =

∫
xk−1e−

x
Θ

ΘkΓ(k)
dx

Using integration by parts, ∫
γ(x, k,Θ)dx = −Θ

xk−1e−
x
Θ

ΘkΓ(k)
+

∫
xk−2e−

x
Θ

Θk−1Γ(k − 1)
dx

The above equation can be written as
∫
γ(x, k,Θ)dx = −Θγ(x, k,Θ) +

∫
γ(x, k − 1,Θ)dx. By recursively solving the

integral term using integration by parts, the equation reduces to
∫
γ(x, k,Θ)dx = −Θγ(x, k,Θ) − Θγ(x, k − 1,Θ) . . . −

Θγ(x, k = 1,Θ). Hence, we can write the final form of the equation as:∫
γ(x, k,Θ)dx = −Θ

k∑
n=1

xn−1e−
x
Θ

ΘnΓ(n)
(2)



2. Closed form solution for P (|X − Y | ≤ δ) when X, Y ∼ γ(k,Θ), k ∈ Z+

The probability of sampling two variables within a margin δ of each other can be written as:

P (|X − Y | ≤ δ) =

∫ δ

0

γ(x, k,Θ)

∫ x+δ

0

γ(y, k,Θ)dydx+

∫ ∞
δ

γ(x, k,Θ)

∫ x+δ

x−δ
γ(y, k,Θ)dydx (3)

Using the previous result Eq: 2, we can simplify the above equation as:

=

∫ δ

0

γ(x, k,Θ)

[
−Θ

k∑
n=1

(x+ δ)n−1e−
(x+δ)

Θ

ΘnΓ(n)

]
dx+

∫ δ

0

γ(x, k,Θ)dx

+

∫ ∞
δ

γ(x, k,Θ)

[
−Θ

k∑
n=1

(x+ δ)n−1e−
(x+δ)

Θ

ΘnΓ(n)

]
dx−

∫ ∞
δ

γ(x, k,Θ)

[
−Θ

k∑
n=1

(x− δ)n−1e−
(x−δ)

Θ

ΘnΓ(n)

]
dx

We write Eq: 4 as P (|X−Y | ≤ δ) = A+B+C+D. While a closed form solution can be easily obtained for B (integral
of gamma), We rely on the use of the binomial theorem (x+ δ)n−1 =

∑i=n−1
i=0

n−1Cix
iδ(n−1)−i to simplify terms A, C and

D. The method to solve A, C and D remains the same, hence we show here to focus on reducing A to a closed form solution
in this supplementary material.

A =

∫ δ

0

γ(x, k,Θ)

[
−Θ

k∑
n=1

(x+ δ)n−1e−
(x+δ)

Θ

ΘnΓ(n)

]
dx

= −Θ

k∑
n=1

n−1∑
i=0

∫ δ

x=0

n−1Ciδ
(n−1)−ixk+i−1e−

2x+δ
Θ

Θk+nΓ(n)Γ(k)
dx

We try to write the above equations by creating a new gamma distribution. After reorganizing the terms, we get:

A = −Θe
−
δ

Θ
k∑

n=1

n−1∑
i=0

n−1Ciδ
(n−1)−i

2k+iΘn−i

∫ δ

x=0

xk+i−1e−
x

Θ/2

(
Θ

2
)k+iΓ(n)Γ(k)

dx

The final obstacle of writing the integral term into another gamma distribution is introducing Γ(k+i). We use the property

of gamma functions, Γ(k + i) =
(k + i− 1)!

(k − 1)!
Γ(k). We reduce A to:

A = −Θe
−
δ

Θ
k∑

n=1

1

Γ(n)

n−1∑
i=0

n−1Ci
k+i−1P iδ

(n−1)−i

2k+iΘn−i

∫ δ

x=0

γ(x, k + i,Θ/2)dx

Fortunately, we have previously shown that a closed form solution exists to compute the integral of the gamma function.
We therefore reach the final solution for A:

A = −Θe
−
δ

Θ
k∑

n=1

1

Γ(n)

n−1∑
i=0

n−1Ci
k+i−1P iδ

(n−1)−i

2k+iΘn−i (−Θ

2

k+i∑
m=1

δm−1e−
δ

Θ/2

(Θ/2)mΓ(m)
+ 1)

B, C, D involve a similar reduction process. Evaluation of terms at lim x → ∞ reduces to 0 since all the terms contain
(xn/ex). We reproduce the final solution for A, B, C, D below:



A = −Θe
−
δ

Θ
k∑

n=1

1

Γ(n)

n−1∑
i=0

n−1Ci
k+i−1P iδ

(n−1)−i

2k+iΘn−i (−Θ

2

k+i∑
m=1

δm−1e−
δ

Θ/2

(Θ/2)mΓ(m)
+ 1)

B = −Θ

k∑
n=1

δn−1e−
δ
Θ

ΘnΓ(n)
+ 1

C = −Θe
−
δ

Θ
k∑

n=1

1

Γ(n)

n−1∑
i=0

n−1Ci
k+i−1P iδ

(n−1)−i

2k+iΘn−i (
Θ

2

k+i∑
m=1

δm−1e−
δ

Θ/2

(Θ/2)mΓ(m)
)

D = Θe

δ

Θ
k∑

n=1

1

Γ(n)

n−1∑
i=0

n−1Ci
k+i−1P i(−δ)(n−1)−i

2k+iΘn−i (
Θ

2

k+i∑
m=1

δm−1e−
δ

Θ/2

(Θ/2)mΓ(m)
)

(4)

As in the paper, let f(i, n, k, δ,Θ) =
e−

δ
Θ
n−1Ci

k+i−1P iδ
(n−1)−i

2k+iΘn−i and G(x, k,Θ) = −Θ
∑k
n=1

xn−1e−
x
Θ

ΘnΓ(n)
. We note

the C cancels the first term in A, leaving us with the final solution for P (|X − Y | ≤ δ) = A + B + C + D:

P (|X − Y | ≤ δ) = 1−ΘG(δ, k,Θ)−Θ

n=k∑
n=1

1

Γ(n)

i=n−1∑
i=0

f(i, n, k, δ,Θ)

+ Θ

n=k∑
n=1

1

Γ(n)

i=n−1∑
i=0

f(i, n, k,−δ,Θ)G(δ, k + i,Θ/2) (5)



3. LearningLoss++ Gradient

We define similar notations from the paper: (li, lj) represent the true loss for images (xi, xj), the intermediate represen-
tations from the network for these images being (θi, θj). We define the learning loss network to be l̂i = θTi w where l̂i is the
predicted/indicative loss for image xi. We define the ground truth probability of sampling xi over xj as: pi = li/(li + lj)

and similarly for pj . The network’s probability of sampling xi over xj is qi = el̂i/(el̂i + el̂j ) with qj defined similarly. The
minimizatio objective is:

Lloss(w, θi, θj) = KL(p||q) = pilog
pi
qi

+ pj log
pj
qj

(6)

On substituting p, q and computing the gradient with respect to w, Eq: 6 reduces to:

∇wL = −∇w

[
pilog(

eθ
T
i w

eθ
T
i w + eθ

T
j w

) + pj log(
eθ
T
j w

eθ
T
i w + eθ

T
j w

)

]
= −∇w

[
piθ

T
i w + pjθ

T
j w − (pi + pj)log(eθ

T
i w + eθ

T
j w)

]
= −piθi − pjθj +

eθ
T
i wθi + eθ

T
j wθj

eθ
T
i w + eθ

T
j w

Using the definition of l̂i, l̂j , qi, qj , the equation can be written as:

∇wL = −piθi − pjθj + qiθi + qjθj (7)

Since pi + pj = 1, qi + qj = 1, we get (qi − pi) = −(qj − pj). The final gradient can now be written as:

∇wL(w, θi, θj) = (qi − pi)(θi − θj) (8)



4. Expected Gradient for LearningLoss++

Since providing a proof for the entire solution is time consuming and lengthy, we provide a derivation for the main skeleton
and show that the solutions discussed above (integral of gamma, binomial) can be reused to obtain a closed form solution for
the expected gradient. We continue from Eq: 8 in the paper; the expected gradient is defined as:

Ex[∇wL(X = x, Y = x+ δ2 | δ2)] =

∫ x=∞

x=0

∫ y=x+δ2

y=x+δ1

(qi −
x

2x+ δ2
)(θi − θj)p(x, y|δ2)dydx (9)

Where we define δ1 as lim δ2 − δ1 → 0+ to accurately define area under the curve as probability. By definition,

p(x, y|δ2) =
γ(x, k,Θ)γ(y, k,Θ)

p(y − x = δ2)
, since X,Y ∼ γ(x, k,Θ). Here, p(y − x = δ2) is the normalizer. We note that

p(y − x = δ2) =
∫∞
x=0

∫ x+δ2
y=x+δ1

γ(x, k,Θ)γ(y, k,Θ)dydx and δ1 → δ−2 . We simplify pi =
x

2x+ δ2
=

1

2
(1 − δ2

2x+ δ2
).

The expectation reduces to:

Ex[∇wL] = qi(θi − θj)−
(θi − θj)

2

[
1−

∫ ∞
x=0

δ2
2x+ δ2

∫ x+δ2

y=x+δ1

γ(x, k,Θ)γ(y, k,Θ)

p(y − x = δ2)
dydx

]
(10)

Since p(y − x = δ2) is the normalizer, it is constant given δ2. We therefore write D = p(y − x = δ2). This allows us to
write Eq: 10 as:

= qi(θi − θj)−
(θi − θj)

2

[
1−

∫ ∞
x=0

δ2
2x+ δ2

γ(x, k,Θ)

D

∫ x+δ2

y=x+δ1

γ(y, k,Θ)dydx

]
(11)

We see that Eq: 11 bears a strong resemblance with the derivation of P (|X − Y | ≤ δ) we proved earlier. We can directly
substitute the values of γ(x, k,Θ),

∫ x+δ2
y=x+δ1

γ(y, k,Θ) [Integral of Gamma] and f(i, n, k, δ,Θ) from Eq: 5 into the above
equation to get:

= qi(θi − θj)−
(θi − θj)

2
[ 1 +

Θ

D

k∑
n=1

1

Γ(n)

n−1∑
i=0

f(i, n, k, δ2,Θ)

∫ ∞
x=0

xk+i−1e−
x

Θ/2

(
Θ

2
)k+iΓ(k + i)

δ2
2x+ δ2

dx

− Θ

D

k∑
n=1

1

Γ(n)

n−1∑
i=0

f(i, n, k, δ1,Θ)

∫ ∞
x=0

xk+i−1e−
x

Θ/2

(
Θ

2
)k+iΓ(k + i)

δ2
2x+ δ2

dx ]

Let t = 2x+ δ2, then the above equation reduces to:

= qi(θi − θj)−
(θi − θj)

2
[ 1 +

Θ

D

k∑
n=1

1

Γ(n)

n−1∑
i=0

f(i, n, k, δ2,Θ)

∫ ∞
t=δ2

(t− δ2)k+i−1e−
(t−δ2)

Θ/2

(
Θ

2
)k+iΓ(k + i)

δ2
t

dt

− Θ

D

k∑
n=1

1

Γ(n)

n−1∑
i=0

f(i, n, k, δ1,Θ)

∫ ∞
t=δ2

(t− δ2)k+i−1e−
(t−δ2)

Θ/2

(
Θ

2
)k+iΓ(k + i)

δ2
t

dt ]

If we let I(k + i,Θ) =
∫∞
t=δ2

(t− δ2)k+i−1e−
(t−δ2)

Θ/2

(
Θ

2
)k+iΓ(k + i)

δ2
t

dt, then we can write the expected gradient Ex[∇wL] as:



Ex[∇wL(δ)] = (θi − θj)

[
qi −

1

2
+

Θ

2D

k∑
n=1

1

Γ(n)

n−1∑
i=0

I(k + i,Θ)[f(i, n, k, δ2,Θ)− f(i, n, k, δ1,Θ)]

]
(12)

We note that this is the final expected gradient given the margin δ and δ1 → δ−2 = δ. However, we still need to compute
the closed form solution for D and I(k + i,Θ). We first compute the value of D:

D = p(y − x = δ2) =

∫ ∞
x=0

γ(x, k,Θ)

∫ x+δ2

y=x+δ1

γ(y, k,Θ)dydx

We have previously computed a similar result when deriving the closed form solution, where use the integral of gamma as
well as the binomial theorem to solve for integrating a gamma function within a gamma function. To avoid repetitive steps,
we present the final solution for D:

D = p(y − x = δ2) = Θ

k∑
n=1

1

Γ(n)

n−1∑
i=0

f(i, n, k, δ1,Θ)− f(i, n, k, δ2,Θ) (13)

The solution for I(k + i,Θ) =
∫∞
t=δ2

(t− δ2)k+i−1e−
(t−δ2)

Θ/2

(
Θ

2
)k+iΓ(k + i)

δ2
t

dt is similar with the use of the binomial theorem to convert

the integral into a sum of integrals. However, the following caveat exists: The division by t renders one term in the expansion

an exponential integral of the form
e−t

t
. This is reflected in the solution for I(k + i,Θ):

I(u = k + i,Θ) = e

δ2
Θ

u−1∑
j=1

(−1)u−1−jδu−j2
u−1Cj

θu−j u−1Pu−j

∫ ∞
t=δ2

γ(j,Θ) +
e
δ2
Θ (−1)u−1δu2
Θu(u− 1)!

Γ(0,
δ2
Θ

) (14)

While the first term again contains the integral of the gamma function which is a closed form solution, the second term is a
consequence of the exponential integral that leads to the lower incomplete gamma function. We therefore have shown that
both D and I(u = k+ i,Θ) have closed form solutions, allowing the expected gradient Eq: 12 to have a closed form solution.


