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Abstract

This supplementary material covers the following: 1) Deriving our expected likelihood
formulation 2) Short discussion of aleatoric uncertainty in pose estimation 3) Description
of the method to visualize our conditional distribution 4) Additional images for likelihood
estimation and pose refinement 5) Algorithm implementation: VL4Pose

1 Likelihood Estimation
Our skeleton formulation allows us to describe the distribution over joints as:

qBN(y1,y2 . . .yN |x,θ) =
[N−1

∏
i=1

q(yi|yi+1,x,θ)
]

q(yN |x,θ) (1)

Here ‘N’ represents the number of joints with q(yN |x,θ) representing the distribution of the
root node, such as the head joint. We have also defined the pose estimator’s distribution over
the joints:

ppose(Y ) = ppose(y1,y2 . . .yN) =
N

∏
i=1

p(yi) (2)

As previously noted, our assumption of independence is in line with the training objective
of popular pose estimators [1, 5, 6]. We also note that Y denotes the set of random variables
y1 . . .yN . The expected log-likelihood w.r.t the set of keypoints is:

EY

[
log qBN(y1,y2 . . .yN |x,θ)

]
(3)

Substituting Eq: 1 in Eq: 3 and expanding, we get:
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EY

[
log qBN(yN |x,θ) +

N−1

∑
i
logqBN(yi|yi+1,X ,θ)

]
(4)

For human pose, the domain of p(Y ) represents all possible positions in the heatmap
across all joints, which is intractable to compute. Hence, we limit the domain to local max-
ima in the heatmap for all joints. To ensure that the resultant distribution is valid, we nor-
malize the local maxima within a heatmap to sum upto one. For hand pose, the network does
not predict a distribution but provides a point estimate of y, limiting the domain to one pose
configuration only. Therefore we can represent Eq: 4 as:

∑
Y

[
log qBN(yN |x,θ)

N

∏
i=1

p(yi) +
N−1

∑
i
logqBN(yi|yi+1,X ,θ)

N

∏
i=1

p(yi)

]
(5)

We make one important note: q(yi| . . .) depends only on p(yi), therefore ∑Y ∏
N
j=1 p(y j) = 1

where j ̸= i. Hence, we arrive at our final formulation:

∑
Y

[
ppose(yN)log qBN(yN |x,θ) +

N−1

∑
i

ppose(yi)logqBN(yi|yi+1,X ,θ)

]
(6)

2 Aleatoric Uncertainty For Pose Estimation
Since our approach is similar to that in [1, 2, 4], one might be tempted to brand this method as
aleatoric uncertainty. However, we consciously refrain from doing so. Aleatoric uncertainty
represents the noise inherent in our data which cannot be reduced by increasing the samples
drawn. While [2, 4] and [1] further define aleatoric uncertainty for human and hand pose
respectively, we believe that aleatoric uncertainty for keypoints is incorrectly represented in
this literature.

Caramalau et al. [1] directly extends [3] to hand keypoint estimation, thereby solving
p(joints|X ,Θ) = ∏i p(yi|X ,θ). The assumption that all joints are independent of each
other is incorrect when computing aleatoric uncertainty. Observing any one of these variable
results in drastic uncertainty reduction for the unobserved counterpart, going against the
principle of aleatoric uncertainty.

Works such as [2, 4] model aleatoric uncertainty as a multivariate normal distribution
over joints Y . However, this uncertainty is reducible by observing more data and thus not
aleatoric in a strict sense. For instance, rare poses are difficult to learn and hence the any net-
work estimates a covariance matrix that reflects the uncertainty in the model’s predictions.
However, if we sample and train the model on more of such rare poses, it is expected that
the model performance improves on these poses thereby reducing the associated uncertainty.
This is in conflict with the definition of aleatoric uncertainty. Hence, we refrain from catego-
rizing our uncertainty measures as aleatoric or epistemic since more investigation is required
into sources of uncertainty for human pose.

3 Visualizing the conditional distribution
Visualizing the offset based conditional distribution for hand pose estimation is trivial. The
normal distribution for the child joint is centred around the point determined by the parent

Citation
Citation
{Caramalau, Bhattarai, and Kim} 2020

Citation
Citation
{Gundavarapu, Srivastava, Mitra, Sharma, and Jain} 2019

Citation
Citation
{Lu and Koniusz} 2022

Citation
Citation
{Gundavarapu, Srivastava, Mitra, Sharma, and Jain} 2019

Citation
Citation
{Lu and Koniusz} 2022

Citation
Citation
{Caramalau, Bhattarai, and Kim} 2020

Citation
Citation
{Caramalau, Bhattarai, and Kim} 2020

Citation
Citation
{Kendall and Gal} 2017

Citation
Citation
{Gundavarapu, Srivastava, Mitra, Sharma, and Jain} 2019

Citation
Citation
{Lu and Koniusz} 2022



SHUKLA ET AL.: VL4POSE (SUPPLEMENTARY) 3

joint adjusted with the predicted offset. Instead of visualizing in 3D, we visualize the dis-
tribution in 2D which is better suited for print media. This requires marginalizing over the
depth d since we wish to preserve the spatial representation for the multivariate normal distri-
bution. Fortunately for us, marginalizing over a multivariate normal distribution is equivalent
to dropping the variable being marginalized from the mean and covariance matrix of the dis-
tribution. Therefore, the resultant spatial normal distribution obtained by marginalizing the
depth is straightforward to visualize in 2D.

In contrast, visualizing the distance based conditional distribution for human pose es-
timation is tricky. Viewing the distribution as a ring for all the skeletal links with radius,
thickness as per the predicted mean, variance soon results in an overlapping non-informative
visualization. Instead, for each link we plot a univariate gaussian in 2D with its centre lo-
cated at the predicted distance along the line joining the parent and the child. Our reasoning
for following this approach is based on the triangle inequality, where the difference between
the predicted and actual distance is the lowest when the predicted gaussian lies along the
same axis as the parent-child joints. Fortunately, this approach is easier for the visualization
and analysis of multiple joints simultaneously as shown in the paper.

4 Algorithm Implementation: VL4Pose
Algorithm : 1 provides a pseudo-code for implementing VL4Pose. The essence of the
pseudo-code lies in depth first search to evaluate the likelihood for various poses. The di-
rected acyclic graph is represented as a tree with each node representing the joint. Each
joint is associated with peaks and locations (obtained from joint heatmap) as well as param-
eters associated with the parent-child distribution. The pseudo-code recursively evaluates
the combination of joints which results in the highest expected likelihood. The pseudo-code
can be easily tweaked to obtain the highest likelihood as well as pose from the resultant
heatmaps and conditional distributions.

5 Visualizations
We present more images depicting likelihood estimation (Fig: 1) and pose refinement (Fig:
2) using VL4Pose.



4 SHUKLA ET AL.: VL4POSE (SUPPLEMENTARY)

Maximum Likelihood

Minimum Likelihood

Figure 1: [Please zoom in] Visualizing qBN(yi|yi+1,x,θ): The skeleton represents the pose
estimator’s predictions Ŷ = f (x,Θ) and filled circles are the ground truth Y . We highlight
the correlation between pose uncertainty and likelihood, and likelihood with actual model
performance.

Figure 2: [Please zoom in] Pose refinement: The skeleton represents the optimal pose con-
figuration Y ∗ that maximizes the likelihood, and filled circles are the the pose estimator’s
predictions Ŷ = f (x,Θ). We highlight VL4Pose’s potential to identify the correct pose Y ∗

even when Ŷ has minor errors (marked in arrows).
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Algorithm 1: VL4Key
Input: Human pose estimator ( fΘ), Auxiliary network (gθ ), Budget (B)
Output: Unlabelled images (x∗U ) for annotation
Data: Unlabelled (xU ) images

1 skeleton = [ head → neck ; neck → thorax . . . ] // length: num_links

2 class Keypoint:
3 /* Default initialization for each joint */

4 function __init__ () :
5 string name
6 list locations, peaks, children, parameters

7 /* DFS: Depth First Search likelihood evaluation */

8 function compute_likelihood (parent_loc, link_params) :
9 empty list max_likelihood_per_location

10 for i, loc in enumerate(self.locations) do
11 if len (self.children) == 0 then
12 /* Leaf node reached: recursion exit condition */

13 return 0
14 else
15 /* Evaluate position of self given parent location */

16 log_ll = log N (dist(parent_loc , loc) ; link_params)
17 /* log prob: log p̂i (yi [u,v] = loc) where yi is heatmap i */

18 log_ll += log peaks[i]
19 for child in self.children do
20 log_ll += child.compute_likelihood (loc, parameters[i])

21 max_likelihood_per_location.append(log_ll)

22 return max ( max_likelihood_per_location )

23 initialize likelihoods = empty_array(size = xU .shape[0])

/* GPU parallel since each image is independent of the other */

24 for i, x in enumerate(xU ) do
25 ȳ = f (x,Θ) // heatmaps of size: num_joints × 64 × 64

26 params= g(x,θ) // Gaussian parameters: num_links × 2

27 locations, peaks = local_maxima (ȳ)
28 keypoints_holder = dict()

29 for j, joint in enumerate(joints) do
30 keypoints_holder [joint] = Keypoint (name=joint, locations[j], peaks[j])

31 for j, link in enumerate(skeleton) do
32 parent = link [0]
33 child = link [1]
34 keypoints_holder [parent].children.append (keypoints_holder [child])
35 keypoints_holder [parent] = params [j]

36 likelihoods [i] = keypoint_holder [‘head’].compute_likelihood()

37 return x∗U : Return samples corresponding to bottom - B likelihoods
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