KEYPOINT ESTIMATION

Megh Shukla
2" |nternational Research Workshop on Advances Deep Learning and Applications (WADLA)




KEYPOINT ESTIMATION
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Modelling: How does keypoint estimation work?
Data: How do we collect data to make keypoint estimation work?
Demo: Talk is cheap, show me the codel
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https://www.mercedes-benz.co.in/passengercars/mercedes-benz-cars/models/gls/gls-suv---x168/design/interior/mbux-interior-assistant-.html

WHAT IS KEYPOINT ESTIMATION?

Source Source

Source


https://nanonets.com/blog/human-pose-estimation-2d-guide/
https://ai.googleblog.com/2019/08/on-device-real-time-hand-tracking-with.html
https://www.robots.ox.ac.uk/~vedaldi/assets/pubs/jakab20self-supervised.pdf
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EXAMPLES: KEYPOINT ESTIMATION
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PART 1: MODEL
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HUMAN POSE ESTIMATION
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Eg: Action Recogniton


https://blog.tensorflow.org/2018/05/real-time-human-pose-estimation-in.html

BACKGROUND: DEEP LEARNING
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BELIEF PROPAGATION
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More on belief propagation: belief propagation.pdf (emtiyaz.github.io)

Jain et al., “Learning Human Pose Estimation Features with Convolutional Networks”, ICLR 2014
Also see: Tompson et al., “Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation”, NeurIPS 2014


https://emtiyaz.github.io/pcml15/belief_propagation.pdf
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DEEP POSE

Initial stage
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DNN-based regressor

220 x 220

Right elbow x: 0.45
Right elbow y: 0.12
Left elbow x: 0.98

Regression

targets relative
to bounding box

Stage s

DNN-based refiner

(X(S-I)i_ y (s-1) i)

send refined values

Multimodal distributions?

Minimizer of to next stage

E(|X — @predl)

p(x)

Additional issue...
Do scalar (vector) quantities reflect keypoints accurately?

Toshev and Szegedy, “DeepPose: Human Pose Estimation via Deep Neural Networks”, CVPR 2014


http://www.cs.cornell.edu/courses/cs6670/2018fa/lec18-pose.pdf




| HIGH RESOLUTION NETWORK
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OPEN POSE

(d) Bipartite Matching \ (e) Parsing Results

® Part j;
‘ Part jQ

Cao et al., “OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields”, T-PAMI
Also see: Kreiss et al., “OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association”, IEEE Transactions — ITS 2021



3D HUMAN POSE ESTIMATION

Lifting 2D to 3D )
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Martinez et al., “A simple yet effective baseline for 3d human pose estimation”, ICCV 2017
Chen and Ramanan, “3D Human Pose Estimation = 2D Pose Estimation + Matching”, CYPR 2017

Triangulation using multiple views

2D joint heatmaps 2D joint keypoints

1% camera [J, 96, 96] N.2
2D backbone soft-argmax +
joints' confidences: [ w swy ]
000 e algebraic
triangulation

joints' confidences: [ wq,, ...y Wg ]

E 2D backbone soft-argmax +

C™" camera 2D joint heatmaps 2D joint keypoints
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Iskakov et al., “Learnable Triangulation of Human Pose”, ICCV 2019
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EVALUATION METRIC:
PERCENTAGE CORRECT KEYPOINTS
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PART 2: DATA




WE HAVE THE MODEL. GREAT!
BUT HOW DO WE CURATE OUR DATASET?



http://burrsettles.com/pub/settles.activelearning.pdf

WHY ACTIVE LEARNING?

An intelligent way of curating datasets

Cost Savings & Faster Deployment Bias Elimination

Smaller datasets d. Faster annotation Reduces overlap /
Faster training oversampling

Lower annotation costs




CORE-SET
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Sener and Savarese, “Active Learning for Convolutional Neural Networks: A Core-Set Approach”, ICLR 2018



LEARNING LOSS

Input — Model —> Target prediction

Loss prediction module — Loss prediction

(a) A model with a loss prediction module
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Yoo and Kweon, “Learning Loss For Active Learning”, CYPR 2019
Shukla and Ahmed, “A Mathematical Analysis of Learning Loss for Active Learning in Regression”, CVPRW 2021



LEARNING LOSS
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Yoo and Kweon, “Learning Loss For Active Learning”, CYPR 2019
Shukla and Ahmed, “A Mathematical Analysis of Learning Loss for Active Learning in Regression”, CVPRW 2021



MULTI-PEAK ENTROPY

Liv and Ferrari, “Active Learning for Human Pose Estimation”, ICCV 2017



BAYESIAN UNCERTAINTY

Epistemic Aleatoric

Kendall and Gal, “What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision2”, NeurlPS 2017



BAYESIAN UNCERTAINTY + CORE-SET

CKE

Step1. Find minimum Step1. Find minimum
pairwise distance pairwise distance
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Step2. Find maximum distance Step2. Find maximum distance
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Step3. Select the.corresponding Step3. Select the corresponding
unlabelled point /" unlabelled point
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Caramalau et al., “Active Learning for Bayesian 3D Hand Pose Estimation”, WACY 2021



EXPECTED GRADIENT LENGTH
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Megh Shukla, “Bayesian Uncertainty and Expected Gradient Length — Regression: Two Sides of the Same Coin?”, WACV 2022
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Megh Shukla, “Bayesian Uncertainty and Expected Gradient Length — Regression: Two Sides of the Same Coin?”, WACV 2022



PART 3: DEMO
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PREREQUISITES — NVIDIA GPU
N\

Python 3.8:

https: / /docs.conda.io /en /latest /miniconda.html#windows-
installers

conda create --name WADLA_HumanKeypoint python=3.8

conda install -c pytorch -c conda-forge -c anaconda pytorch
opency albumentations matplotlib numpy umap-learn scipy scikit-
learn scikit-image tensorboard pandas torchaudio torchvision
pyyaml seaborn jupyter




