Fisher Information Applications in Gradient Descent and Incremental Learning

Megh Shukla

RD I/CEI Mercedes-Benz Research and Development India

30 April 2021

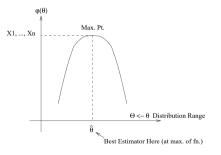
- 1. Why Fisher Information?
- 2. Applications Natural Gradient
- 3. Applications Online Learning
- 4. Applications Active Learning

Revisiting Maximum Likelihood

Given some observations x, we want to obtain θ that maximizes $f(x|\theta)$. With the *i.i.d* assumption, our likelihood function is $\psi(\theta) = f(x_1|\theta) \times \ldots \times f(x_n|\theta)$.

Maximum Likelihood Estimate

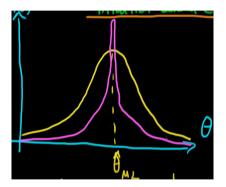
$$\psi(\hat{ heta}) = rg \max_{ heta} \psi(heta)$$



Log likelihood makes it easy to obtain $\hat{\theta} = \arg \max_{\theta} \psi(\theta) = \sum_{i=1}^{N} \log f(x_i | \theta)$

Revisiting Maximum Likelihood

Q1. So what after $\hat{\theta}$? How confident are we about our prediction?



Q2. Are we sure about $\hat{\theta} \to \theta_0$ as $n \to \infty$? ... Fisher Information to the rescue!

Definition

Fisher Information

$$\mathcal{I}_{ heta} = \mathbb{E}_{x} igg[
abla_{ heta} \log p(x| heta)
abla_{ heta} \log p(x| heta)^{\mathcal{T}}$$

• • •

• • •

• • •

. . .

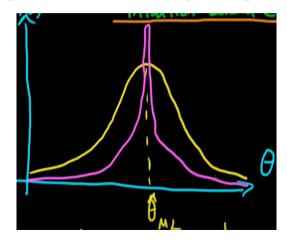
Ye kya hai ?!

- 1. Asymptotic variance of the log likelihood estimate
- 2. Sensitivity of the parameter $\boldsymbol{\theta}$

How !? - Out of syllabus

Sensitivity of θ

$$\mathcal{I}_{ heta} = \mathbb{E}_{x} igg[
abla_{ heta} \log p(x| heta)
abla_{ heta} \log p(x| heta)^{\mathcal{T}} igg] \equiv -\mathbb{E}_{x} igg[
abla_{ heta}^{2} \log p(x| heta) igg]$$



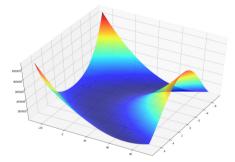
Once upon a time, there was the Law of Large Numbers: $P(|\bar{X} - \mathbb{E}(X)| > \epsilon) \to 0$. The Central Limit Theorem defines the rate of convergence: $P(\bar{X} - \mathbb{E}(X)) \to \mathcal{N}(0, \frac{\sigma^2}{n})$

Theorem (Asymptotic Variance of the maximum likelihood estimate)

 $\sqrt{n}(\hat{ heta} - heta_0)
ightarrow \mathcal{N}(0, \mathcal{I}_{ heta_0}^{-1})$

Applications - Natural Gradient

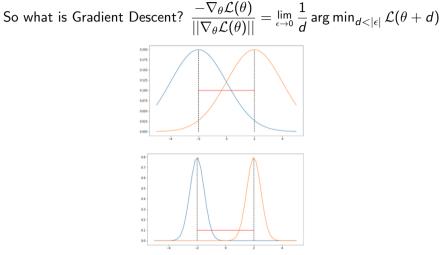
So why is the Hessian important in optimization? Why do we not use the Hessian in our optimization process?



Theorem (Equivalency between Fisher and Hessian)

 $\mathcal{I}_{\theta} = -\mathbb{E}_{p(x|\theta)}[H_{\log p(x|\theta)}]$

Applications - Natural Gradient



Parameter space or Distribution space?

Applications - Natural Gradient

Distribution space: KL Divergence!

Equivalence between KL divergence and Fisher information

$$extsf{KL}[p(x| heta)||p(x| heta+d)] pprox rac{1}{2} d^{ op} \mathcal{I}_{ heta} d$$

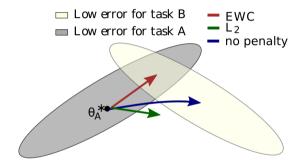
So a step in the parametric space is replaced by a step in the distribution space! $\lim_{\epsilon \to 0} \arg\min_{d < |\epsilon|} \mathcal{L}(\theta + d) \implies \lim_{\epsilon \to 0} \arg\min_{d : \mathcal{K}L[p_{\theta}||p_{\theta + d}] = \epsilon} \mathcal{L}(\theta + d)$

Theorem (Natural Gradient)

$$\hat{
abla}_{ heta}\mathcal{L}(heta)=\mathcal{I}_{ heta}^{-1}
abla_{ heta}\mathcal{L}(heta)$$

So why is Natural Gradient not popular? Ummm, Fisher matrix and inversion is expensive? So can we approximate the Fisher matrix? Yes, as done in *Adam* optimizer!

Applications - Elastic Weight Consolidation

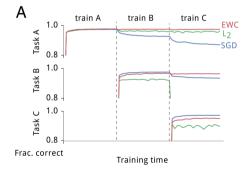


Extending $\log p(\theta|\mathcal{D}) = \log p(\mathcal{D}|\theta) + \log p(\theta) - \log p(\mathcal{D})$ to tasks $\mathcal{D}_A, \mathcal{D}_B$: $\log p(\theta|\mathcal{D}) = \log p(\mathcal{D}_B|\theta) + \log p(\theta|\mathcal{D}_A) - \log p(\mathcal{D}_B)$

Applications - Elastic Weight Consolidation

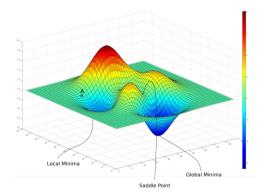
Theorem (Elastic Weight Consolidation)

$$\mathcal{L}(heta) = \mathcal{L}_{B}(heta) + \sum_{i}rac{\lambda}{2}\mathcal{I}_{i}(heta - heta_{A,i}^{*})^{2}$$



"Overcoming catastrophic forgetting in neural networks", PNAS

Applications - Expected Gradient Length



Expected Gradient Length - Classification $x^*_{EGL} = \arg \max_x \sum_i P(y_i | x; \theta) || \nabla_{\theta} I(\mathcal{L} \cup (x, y_i); \theta) ||$

Applications - Expected Gradient Length

Can we derive this result?

Expected Gradient Length - Classification

$$x_{EGL}^{*} = rg\max_{x}\sum_{i} P(y_{i}|x; \theta) || \nabla_{\theta} I(\mathcal{L} \cup (x, y_{i}); \theta) ||$$

Fisher to the rescue!

Applications - Expected Gradient Length

Asymptotic Variance $\sqrt{n}(\hat{ heta} - heta_0)
ightarrow \mathcal{N}(0, \mathcal{I}_{ heta_0}^{-1})$

Minimizing the variance is same as maximizing the Fisher Information $\max_{q} \int q(y|x,\theta) ||\nabla_{\theta} l(x,y,\theta)||^2 dy dx$

Maximizing *q* is same as selecting unlabelled *x* having largest gradient $x_{EGL}^* = \arg \max_x \sum_i q(y_i|x; \theta) || \nabla_{\theta} I(x, y_i, \theta) ||^2$

"Active Learning for Speech Recognition: the Power of Gradients", NIPS Workshop 2016

Thank you!