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Revisiting Maximum Likelihood

Given some observations x , we want to obtain θ that maximizes f (x |θ).
With the i.i.d assumption, our likelihood function is ψ(θ) = f (x1|θ)× . . .× f (xn|θ).

Maximum Likelihood Estimate

ψ(θ̂) = arg maxθ ψ(θ)

Log likelihood makes it easy to obtain θ̂ = arg maxθ ψ(θ) =
∑N

i=1 log f (xi |θ)
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Revisiting Maximum Likelihood

Q1. So what after θ̂? How confident are we about our prediction?

Q2. Are we sure about θ̂ → θ0 as n→∞?
. . . Fisher Information to the rescue!
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Definition

Fisher Information

Iθ = Ex

[
∇θ log p(x |θ)∇θ log p(x |θ)T

]
. . .
. . .
. . .
. . .
Ye kya hai ?!

1. Asymptotic variance of the log likelihood estimate

2. Sensitivity of the parameter θ

How !? - Out of syllabus
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Sensitivity of θ

Iθ = Ex

[
∇θ log p(x |θ)∇θ log p(x |θ)T

]
≡ −Ex

[
∇2
θ log p(x |θ)

]
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Asymptotic Variance

Once upon a time, there was the Law of Large Numbers: P(|X̄ − E(X )| > ε)→ 0.

The Central Limit Theorem defines the rate of convergence: P(X̄ − E(X ))→ N (0,
σ2

n
)

Theorem (Asymptotic Variance of the maximum likelihood estimate)
√
n(θ̂ − θ0)→ N (0, I−1θ0 )
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Applications - Natural Gradient

So why is the Hessian important in optimization?
Why do we not use the Hessian in our optimization process?

Theorem (Equivalency between Fisher and Hessian)

Iθ = −Ep(x |θ)[Hlog p(x |θ)]
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Applications - Natural Gradient

So what is Gradient Descent?
−∇θL(θ)

||∇θL(θ)||
= lim

ε→0

1

d
arg mind<|ε| L(θ + d)

Parameter space or Distribution space?
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Applications - Natural Gradient

Distribution space: KL Divergence!

Equivalence between KL divergence and Fisher information

KL[p(x |θ)||p(x |θ + d)] ≈ 1

2
dTIθd

So a step in the parametric space is replaced by a step in the distribution space!
lim
ε→0 arg mind<|ε| L(θ + d) =⇒ lim

ε→0 arg mind :KL[pθ||pθ+d ]=ε L(θ + d)

Theorem (Natural Gradient)

∇̂θL(θ) = I−1θ ∇θL(θ)

So why is Natural Gradient not popular? Ummm, Fisher matrix and inversion is expensive? So
can we approximate the Fisher matrix? Yes, as done in Adam optimizer!
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Applications - Elastic Weight Consolidation

Extending log p(θ|D) = log p(D|θ) + log p(θ)− log p(D) to tasks DA,DB :
log p(θ|D) = log p(DB |θ) + log p(θ|DA)− log p(DB)
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Applications - Elastic Weight Consolidation

Theorem (Elastic Weight Consolidation)

L(θ) = LB(θ) +
∑

i

λ

2
Ii (θ − θ∗A,i )2

”Overcoming catastrophic forgetting in neural networks”, PNAS
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Applications - Expected Gradient Length

Expected Gradient Length - Classification

x∗EGL = arg maxx
∑

i P(yi |x ; θ) || ∇θl (L ∪ (x , yi ); θ) ||
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Applications - Expected Gradient Length

Can we derive this result?

Expected Gradient Length - Classification

x∗EGL = arg maxx
∑

i P(yi |x ; θ) || ∇θl (L ∪ (x , yi); θ) ||

Fisher to the rescue!

14 / 16



Applications - Expected Gradient Length

Asymptotic Variance√
n(θ̂ − θ0)→ N (0, I−1θ0 )

Minimizing the variance is same as maximizing the Fisher Information
maxq

∫
q(y |x , θ) ||∇θl(x , y , θ)||2 dy dx

Maximizing q is same as selecting unlabelled x having largest gradient
x∗EGL = arg maxx

∑
i q(yi |x ; θ) || ∇θl (x , yi , θ) ||2

”Active Learning for Speech Recognition: the Power of Gradients”, NIPS Workshop 2016
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Thank You!

Thank you!
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