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Revisiting Maximum Likelihood

Given some observations x, we want to obtain # that maximizes f(x|6).
With the i.i.d assumption, our likelihood function is 1(0) = f(x1]6) x ... x f(x,|0).

Maximum Likelihood Estimate

Y(6) = argmax, ¥(9)

o(8)

X1, ..., Xn

© <— 6 Distribution Range

b

Best Estimator [lere (at max. of fn.)

Log likelihood makes it easy to obtain 6 = arg max, 1(6) = Z,N:l log f(x;|0)
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Revisiting Maximum Likelihood

Q1. So what after §? How confident are we about our prediction?

Q2. Are we sure about 0 — 0y as n — oo?
... Fisher Information to the rescue!
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Fisher Information

) = 5[ Voo p(x10) Vo o p(x1)"|

Ye kya hai 7!
1. Asymptotic variance of the log likelihood estimate

2. Sensitivity of the parameter 6

How 17 - Out of syllabus
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Ty = Ex [Ve log p(x|0) Vi log p(XIG)T] = —Ex [VE; log p(XIG)}
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Asymptotic Variance

Once upon a time, there was the Law of Large Numbers: P(|X — E(X)| > ¢) — 0.
2
The Central Limit Theorem defines the rate of convergence: P(X — E(X)) — N(0, U—)
n

Theorem (Asymptotic Variance of the maximum likelihood estimate)

\/ﬁ(é - ‘90) - N(()?Ie_ol)
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Applications - Natural Gradient

So why is the Hessian important in optimization?
Why do we not use the Hessian in our optimization process?

A

Theorem (Equivalency between Fisher and Hessian)

Iy = _Ep(x|0) [Hlogp(x|9)]
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Applications - Natural Gradient

—VoL(0) _ arg ming ¢ £(6 + d)

So what is Gradient Descent? ——— =
IVoL(O)]| < d

Parameter space or Distribution space?
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Applications - Natural Gradient

Distribution space: KL Divergence!

Equivalence between KL divergence and Fisher information

1
KLIp(x(0)[|p(x|0 + d)] ~ 5d " Tyd

So a step in the parametric space is replaced by a step in the distribution space!
lim argming | £(0 +d) = M arg ming. 1 py|1pp s a]=e £(0 + d)

e—0

Theorem (Natural Gradient)

VoL(0) = T, VoL(6)

So why is Natural Gradient not popular? Ummm, Fisher matrix and inversion is expensive? So
can we approximate the Fisher matrix? Yes, as done in Adam optimizer!
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Applications - Elastic Weight Consolidation

o Low error for task B == EwC
= Low error for task A = L2

—— 3 == NO penalty

Extending log p(0|D) = log p(D|6) + log p(0) — log p(D) to tasks Da, Dg:
log p(0|D) = log p(Dg|0) + log p(6|Da) — log p(Ds)
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Applications - Elastic Weight Consolidation

Theorem (Elastic Weight Consolidation)

£(6) = £(6) + 55 570 — 03,

A

train A train B train C
1.0 - : : EWC

i : L2
: ' SGD
0.8 4 ' !

1.0 -

1.0 -

N

Frac. correct

Task A

Task B

Task C

Training time

" Overcoming catastrophic forgetting in neural networks”, PNAS
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Applications - Expected Gradient Length

Local Minima -
Global Minima

Saddle Point

Expected Gradient Length - Classification
Xger = argmax, > P(yilx; 0) || Vol (LU (x,yi); 0) ||
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Applications - Expected Gradient Length

Can we derive this result?

Expected Gradient Length - Classification
XggL = argmax, ) _; P(y;

x;0) || Vol (LU (x,y);0) ]

Fisher to the rescue!
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Applications - Expected Gradient Length

Asymptotic Variance

V(0 — 60) = N(0,Z,. 1)

Minimizing the variance is same as maximizing the Fisher Information
maxgq f q(y|X’9) HVQ/(X,_)/, 0)”2 dy dx

Maximizing g is same as selecting unlabelled x having largest gradient
Xgar = argmax, 3, q(yilx; 0) || Vol (x, i, 0) |2

”Active Learning for Speech Recognition: the Power of Gradients”, NIPS Workshop 2016
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Thank You!

Thank you!

16/16



	Why Fisher Information?
	Applications - Natural Gradient
	Applications - Online Learning
	Applications - Active Learning

