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NEED FOR DIMENSIONALITY REDUCTION
Time and Space Complexity

Time Complexity

Memory



NEED FOR DIMENSIONALITY REDUCTION
Visualization



NEED FOR DIMENSIONALITY REDUCTION
Curse Of Dimensionality

VC Dimension - Overfitting
VCdim(NeuralNet) = 

𝑂(𝑊𝐿 log𝑊)
𝑊 = #𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝐿 = #𝑙𝑎𝑦𝑒𝑟𝑠
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CLASSICAL 
METHODS



LINEAR METHODS
Principal Component Analysis

Explain the variance in the 
data!

Similarity to Linear 
Regression?

Linear

Objective

Constraint

Solution



LINEAR METHODS
Linear Discriminant Analysis

Use class 
information!

Sometimes, no 
labels better than 
having labels!



LINEAR METHODS
Linear Discriminant Analysis

Use class 
information!

Sometimes, no 
labels better than 
having labels!

The embeddings are linearly 
dependent on the input

The objective to optimize

Optimize with respect to the weights

… Reduced to Eigendecomposition

The solution!



LINEAR METHODS –Graph Based Algorithms
Laplacian Eigenmaps

Construct a Graph with 
Adjacency Matrix!

Preserving local 
structure over 
global structure

Graph

Degree
No of neighbours

Adjacency
Presence of edge

Laplacian
Degree - Adjacency



LINEAR METHODS –Graph Based Algorithms
Laplacian Eigenmaps

Construct a Graph with 
Adjacency Matrix!

Preserving local 
structure over 
global structure

Constraint

Eigenvalue Eigenvector everywhere!



LINEAR METHODS
Locally Linear Embedding

A node is known by the 
company he keeps!

Locally linear 
implies dense 
sampling!

The E-step…?

The M-step…?
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MODERN 
METHODS



MODERN APPROACHES
t-Distributed Stochastic Neighbour Embedding

Use class 
information!

Sometimes, no 
labels better than 
having labels!

KL Divergence!



MODERN APPROACHES
Uniform Manifold Approximation and Projection

Projection on a 
Reimannian Manifold

Interpretability…?



MODERN APPROACHES
Autoencoders

Deep Learning 
magic!

Overfitting … ? 

Denoising Autoencoders

Contractive Autoencoders
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IS DIMENSIONALITY 
REDUCTION SOLVED?

Sure the answer is No. But why?



Parameterization

What if we have new 
data? Need more 

dimensions?

Curse Of 
Dimensionality

Euclidean distance 
can sometimes fail 
in high-dimensions

Visualization 
and Clustering

Are they the same 
problem? Or are 
they different?

SHORTCOMINGS
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