A Brief Introduction To Dimensionality Reduction

Megh Shukla 25th September, 2020

AGENDA

CLASSICALMETHODS

02 PCA, LDA, Laplacian Eigenmaps, Locally Linear Embedding

03 MODERNMETHODS Autoencoders, t-SNE, UMAP

04 CONCLUSION Comparison, Summary and Upcoming Research

NEED FOR DIMENSIONALITY REDUCTION

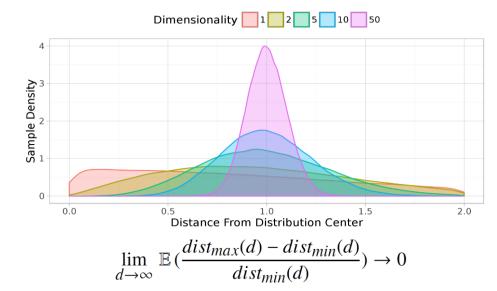
Time and Space Complexity

NEED FOR DIMENSIONALITY REDUCTION

Visualization

NEED FOR DIMENSIONALITY REDUCTION

Curse Of Dimensionality



VC Dimension - Overfitting

 $VC_{dim}(NeuralNet) = O(WL \log W)$

W = #weights L = #layers

AGENDA

02 *CLASSICAL METHODS* PCA, LDA, Laplacian Eigenmaps, Locally

Linear Embedding

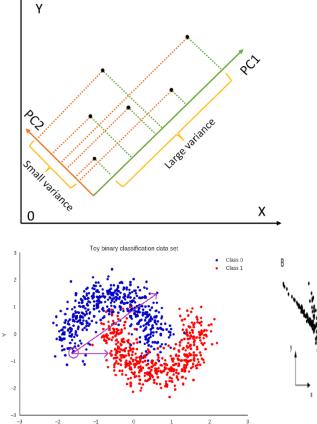
04 CONCLUSION Comparison, Summary and Upcoming Research

CLASSICAL METHODS

Principal Component Analysis

Explain the variance in the data!

Similarity to Linear Regression?



 $\mathbb{X}: Samples \in \mathbb{R}^{N \times d}$ v: Projection Vector

Linear
$$PC_1 = Xv$$

$$\arg\min_{v} ||\mathbb{X} - \mathbb{X}VV^{T}|$$

Constraint $V^T V = I$

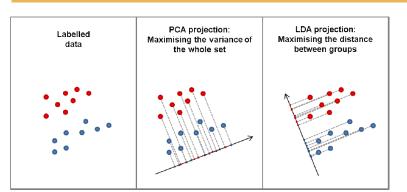
 $\overset{\textbf{Solution}}{\mathbb{X}^T} \overset{\textbf{Solution}}{\mathbb{X}V} = \lambda V$

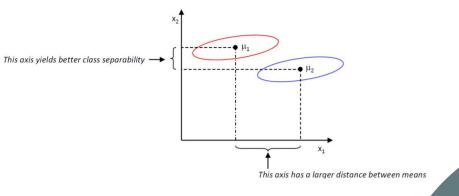
Linear Discriminant Analysis

Use class information!

<u>а</u>:

Sometimes, no labels better than having labels!

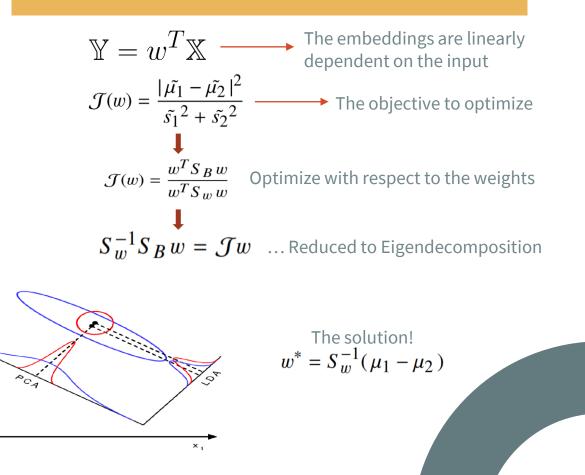




Linear Discriminant Analysis

Use class information!

Sometimes, no labels better than having labels!



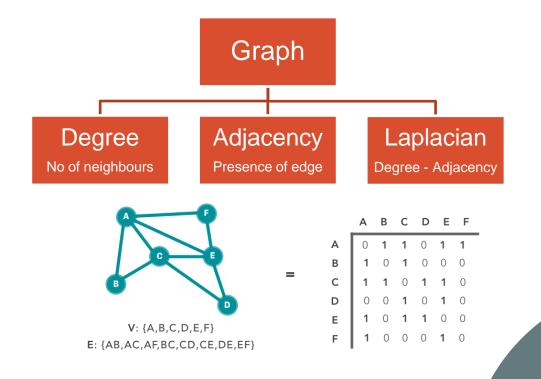
LINEAR METHODS - Graph Based Algorithms

Laplacian Eigenmaps

Construct a Graph with Adjacency Matrix!

Preserv

Preserving local structure over global structure



LINEAR METHODS - Graph Based Algorithms

Laplacian Eigenmaps

Construct a Graph with Adjacency Matrix!

Preserving local structure over global structure $\mathbb{J}(y) = \sum_{i,j} (y_i - y_j)^2 a_{ij}$ $\mathbb{J}(y) = \sum_{i,j} (y_i^2 + y_j^2 - 2y_i y_j) a_{ij}$ $\mathbb{J}(y) = \sum_i y_i^2 D_i + \sum_j y_j^2 D_j - 2 \sum_{i,j} y_i y_j a_{ij}$ $\mathbb{J}(y) = 2Y^T LY$

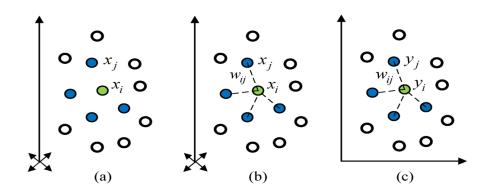
Constraint $Y^T DY = 1$ $Y^T D\mathbf{1} = 0$

Eigenvalue Eigenvector everywhere!

Locally Linear Embedding

A node is known by the company he keeps!

Locally linear implies dense sampling!



The E-step...?

$$\mathcal{E}(W) = \sum_{i} |x_i - \sum_{j} W_{ij} x_j|^2$$

The M-step...?

$$\sum_{i} |y_i - \sum_{j} w_{ij} y_j|^2$$

AGENDA

CLASSICALMETHODS

02 PCA, LDA, Laplacian Eigenmaps, Locally Linear Embedding

03 MODERNMETHODS Autoencoders, t-SNE, UMAP

04 CONCLUSION Comparison, Summary and Upcoming Research

MODERN METHODS

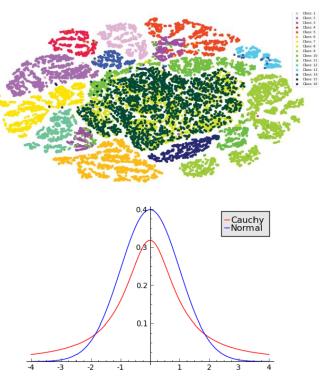
MODERN APPROACHES

t-Distributed Stochastic Neighbour Embedding

Use class information!

: (A):

Sometimes, no labels better than having labels!

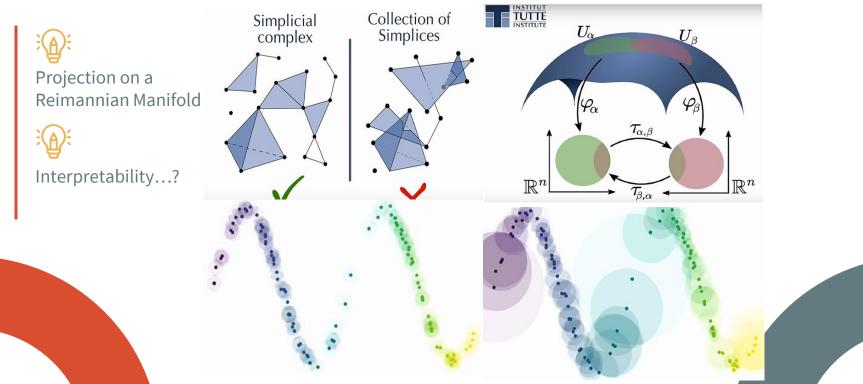


$$p_{j|i} = \frac{exp(-||x_i - x_j||^2 / 2\sigma_i^2)}{\sum_{k \neq i} exp(-||x_i - x_k||^2 / 2\sigma_i^2)}$$
$$q_{j|i} = \frac{exp(-||y_i - y_j||^2)}{\sum_{k \neq i} exp(-||y_i - y_k||^2)}$$

KL Divergence!

MODERN APPROACHES

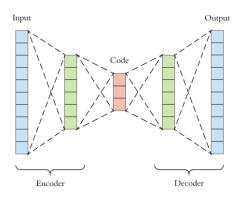
Uniform Manifold Approximation and Projection



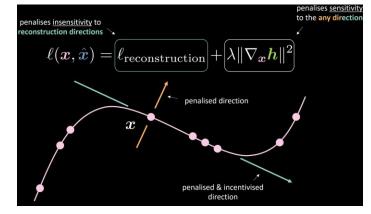
MODERN APPROACHES

Autoencoders

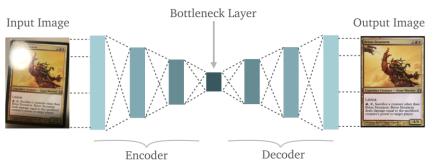
Overfitting ... ?



Contractive Autoencoders



Denoising Autoencoders



AGENDA

CLASSICALMETHODS

02 PCA, LDA, Laplacian Eigenmaps, Locally Linear Embedding

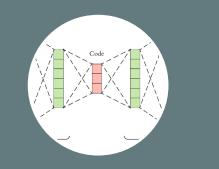
CONCLUSION

04 Comparison, Summary and Upcoming Research

IS DIMENSIONALITY REDUCTION SOLVED?

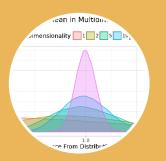
Sure the answer is No. But why?

SHORTCOMINGS



Parameterization

What if we have new data? Need more dimensions?



Curse Of Dimensionality

Euclidean distance can sometimes fail in high-dimensions



Visualization and Clustering

Are they the same problem? Or are they different?

THANK YOU!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik** Please keep this slide for attribution